Maintaining an open source project
while sustaining your sanity

«§\)

/'/ TN

Andrew Gaul ';‘5 A
. \ X I

Open Source Summit Japan
15 December 2021 |
https://youtu.be/F-RAztCSOyc

https://youtu.be/F-RAztCSOyc

About me

e Maintainer of small- to medium-size projects ALL MODERN DIGITAL
: . . INFRASTRUCTURE
Apache jclouds committer since 2012 A

o Originally many maintainers but now only a few
o 100s of contributors ﬁ ﬁ
e S3Proxy author, created in 2014
o Only one maintainer
o ~30 contributors
e s3fs contributor since 2015, committer since 2019 ‘ A PROTECT SOME.
L _J

o Two maintainers, neither are the original authors Fﬁiﬁmﬁs
o ~100 contributors BEEN THANKLESSLY
e Livein Tokyo e 5 ,NCE'” 53"3'36
k-)
C]

(]

What is project maintainership?

Working with users

Triaging issues

Cutting releases

Scoping project

Coordinating contributors
Working with external projects
Reviewing code

Improving project quality
Writing new code (sometimes)

How You think Open Source apps

75

$1€
Wroux

are maintained

VAR t “The validation flow
We said we would ship ! is bla bla bla bla bla
tonight, let's do this! i] A
: =1 . oy
=) ® 3 ~))
|

I've assigned
a team to bla
bla bla bla

How Open Source app

S

are really maintained

Just one more ticket
before going to bed...
{

CommitStrip.com

Sustaining your sanity

e You will burn yourself out if you try to do
everything by yourself

e Instead consider your project from
different vantage points

e Try doing less but different work over
longer periods of time

e This may allow you to sustain a project
for years

e But you will have to get into management

Project maintainers wear many hats

Product manager

o Advocate for the user
Engineering manager
o Advocate for the team

Technical lead
o Advocate for the code

This talk explores what you can
do with few resources and lack of
corporate sponsorship

YOU WEARTO00 MANY HATS
AREBOUND TO TIP OVER

Part 1: Thinking like a product manager

e Advocate for the user

e Evaluate the project against the ecosystem
o Look at many sources: blogs, conferences,
Hacker News, Reddit, Stack Overflow, Twitter
e Think about how users interact with project

o Configuration, releases, packaging,
documentation, backwards compatibility

e Prioritize new features and critical fixes 1 TRKE TIIE HEQ“IREMENTSFRUM THE

o Immediate workarounds can be better than
proper fixes in the future G“STOMERS

e Look at “competing” projects

Issues

e [ssues can be the highest-quality feedback
from your users Iss“Es
o Ora junkyard of vague, unresolved symptoms . "ﬁ
and abuse :
e Periodic grooming can help you and your ' (,
users understand the project - 4

e Clarify, de-duplicate, and close issues
e Proactively use HELPWANTED and
NEEDINFO labels

o Avoids ambiguity and misunderstandings

: l ‘
- \

Case study: s3fs

e s3fs mounts S3 buckets as a filesystem
e (Grooming revealed the most common issues

YOU;HAD:ONE JOB
o POSIX permissions conflicted with S3 interoperability . -
m Required unintuitive configuration workaround - -
m ~20 line PR fixed many issues simultaneously
o Multiple symptoms of data corruption
m Required years of iteration with users, improved o O

-
| . | v
testing, new tooling, and several bug fixes
DO NOT LOSE DATA!

e Hundreds of other issues

o Categorized and ignored for years
o Making slow progress addressing these

Working with users

e Most users are helpful or neutral
. YOURSOFTWARE IS;BAD

e Angry people cannot be helped --
ignore and report abuse if needed Y ‘\\
e Entitled people misunderstand their

relationship to the project -- can be " ©®
educated
e Flip the script -- users should work for
maintainers ‘
o Can users clarify issues, test proposed i“

fixes, investigate workarounds, etc.? A"n vnu snouln FEEI. Bnn

Releases

e Most users consume release versions, not
development branches

e Recommend regular, time-based schedule
o Every six months or less

e Prepare to avoid buggy releases
o Open a tracking issue and ask users to test
o Slow down changes

e Beware of users reporting new bugs against old

versions!

o Understand why users prefer old releases, e.g., stale
distribution packages, APl breakage, regressions

memegenerator.net

Part 2: Thinking like an engineering manager

e Advocate for the team

e Managing project scope against goals LUSED TOHAVE FRIENDS

e Bring people and resources onto the
project

e Coordination with external projects

e Dealing with forks

Managing the team

e Usually cannot tell contributors what to do

o Instead @mention users to ask for help m“-mi GOING TO
e Any blockers to new contributors? ==BE SHORT STAF I’Ell. m!lmn

o Toxic environment, build issues, technical debt,
missing license, unclear code formatting
e Nudge issue reporters to become contributors
o Suggesting how to fix an issue or where to start can
overcome friction

e Qutsource testing of PRs to issue reporters

e Dependencies are logically part of your code SO IFYOU COULD JUST WORK
o Do you report issues upstream? YOURSELF TO DEATH THAT'D BE GREAT

Project scope

e Anti-pattern: be everything to everyone
e Not all proposed changes need to be
merged upstream
o Even well-written ones!
e Will contribution increase your
maintenance burden?
o If so, will the contributor maintain the code?
e Project scope is easy to widen but

difficult to narrow
o Say “no” or “not yet” early and often

Case study: Apache jclouds

e |clouds is a Java-based cross-cloud abstraction
e Declining project activity despite stable user base and

downloads
o More work done by fewer maintainers!

e Scope was too large -- shrank project to compensate
o Removed unmaintained code
o Outsourced difficult features to separate projects (Karaf, CLI)
o Dropped Java 6 and 7 compatibility
o Upgraded or removed old dependencies (Guava, Guice)
o Reducing number of repositories

e These changes should have been made years ago!

Dealing with forks

e Forking has several causes
o Most benign is cherry-picking fixes until the next

release

o Some have local functionality that is inappropriate or
not ready for mainline

o Afew have a major scope, license, or interpersonal
disagreement

e Re-integrating forks can unify users and
development effort
o Look for opportunities to collaborate to reduce user
pain
e Most forks die of neglect but it is worth
understanding their motivations

..YES FRANK! A
FORK IN THE
ROAD...S0 NOW

Case study: s3fs

e s3fs mounts S3 buckets as a filesystem
o Several forks and reimplementations due to inconsistent
maintainership
e Aliyun and Tencent clouds offer S3-compatible

cloud services
o Forked ossfs and cosfs in 2016 to fix bugs and customize
o Re-integrated in 2020 -- now some of their developers work
with mainline
e Another cloud asked to add a non-S3 protocol AND'YOU GET A FORK

o Told contributor “not yet” so mainline can focus on S3 e V__H’EHY“"E GETS AFORK
o Offered to merge partial changes that make their fork easier

+YOU.GET A FORK

Niche users

e Open source allows adapting to new use cases
e Some users are pioneering
o Large-scale, Raspberry Pi, etc.

e But some users ask for esoteric things
o RHEL 6, Java 7, AIX, or POWER compatibility

e You cannot do it all
o Let niche users fork and periodically rebase

| P

Part 3: Thinking like a technical lead

e Advocate for the technology

e Protect existing code

e Think about project evolution over the long
term

e Make proactive technical investments

e Communicate with contributors

Protecting existing code

e Existing code is more important than new

code
o Cost of regressions is higher than you think

e \Write tests and use continuous integration

e Code review helps but is labor intensive
o Especially working with new contributors

e Break up large, risky changes into multiple
smaller ones spread over time

e FEvaluate how a proposed change
interacts with current and future features

Case study: S3Proxy

e S3Proxy implements the S3 API with
different backends, e.g., Azure, filesystem _____
e Adopted Ceph s3-tests project soon after ¥ . TESTSWONT FAIL

project creation
o Solid test coverage that improved over time
o Reduced need to create custom tests
o Butitis a difficult project to work with that
required a long-lived fork

e s3-tests have prevented many
regressions from contributors o
e Aligned project with the ecosystem

IEYOU DONTWRITE TESTS

Evaluating technical risk

e Critically evaluate proposed changes

o Does it improve the user experience?
o Does it limit your contributors?
o Does it reduce or increase the maintenance

burden? |NNOVAT|ON TOKENS

e Choose boring technology? Q Q

o You have limited innovation tokens -- spend wisely /’ ,
o If you take all the risks one of them will burn you

e Think about project evolution
o Will a new library still have maintainers next year?

http://boringtechnology.club/

Technical debt

shared third-party libraries

e Push features out of your project into other

projects

e Try to pay down (some) existing debt before

taking on more debts

Any issue that increases development friction
Missing, flaky, and slow tests

Outdated or unnecessary dependencies
Move from in-tree custom implementations to

T DON'T
UNDERSTAND
WHY IT TAKES
50 LONG To

ADD A NEW
WINDOW.

TeCHNICAL DEBT

Case study: s3fs

e s3fs mounts S3 buckets as a filesystem

e Implements a custom S3 client via libcurl

o Legacy problem since s3fs predates third-party libraries
o Historically a source of bugs
o Frustration due to missing authentication mechanisms

e Transitioning to AWS SDK would address this

debt but comes with trade-offs
o Requires newer C++ compiler and refactoring

o Periodically evaluate but always defer - ‘
e Maintainers keep paying small short-term costs L sm’];ll.!!“
YESTERDAY

instead of addressing long-term issue

L1LLDO/IT.TOMORROW

Thinking out loud
e Internet makes some kinds of collaboration ']“ST“K[Tﬂ BE lﬂ“n

more difficult
e Important to foster a sense of community
with contributors and users

o Can you share your ideas on mailing lists, GitHub

issues, or Twitter?
o Can you ask others what they think?

e Bias towards over-communicating
o Share work-in-progress commits

e Document design in issues, PRs, and wikis
o Non-developers rarely read code comments .

BEING'LOUD IS:MY. FAVORITE.

Part 4: Thinking about sustainability

e Project maintainership is a lot of work S nln“ T I P“SH
o \.(ou may need to .w.rllte less code to make -l-Hls snMEnncK -

time for these activities

e Aim to do fewer things over longer periods
of time

e Sometimes the original author should step
aside to let others maintain a project

 HILLYESTERDAYD®

Thinking about the long term

e \Where do you want your project to be in 1
year?
o ..in 10 years?
e \What kinds of changes would be truly
impactful?
o [Easy to be reactive and fix random issues from
loud users

o Are there broad themes that you can make
progress on?

e Your project may outlast your interest in it
o Can you prepare for the next maintainer?

Thinking about maintainer commitments

e How much time do you want to dedicate to a

project per month?
o 1 hour? 10 hours? 100 hours?!
o Setting a budget helps prioritize your work
e \What quality-of-service you want to provide?
o Consider batch-processing instead of interrupt-driven
development
e Not everything needs to be done today
o ...or maybe ever!

Conclusion

e Perioritize issues that are important to users STEP 1: BUILD STUFF

e Enable contributors and outsource tasks

e Make technology decisions that allow
long-term evolution

e Say “no” and “not yet” more often

e Think about the long-term

-

STEP3:PROFIT! *

Thank you!

Andrew Gaul
http://gaul.org/talks
Open Source Summit Japan
15 December 2021

http://gaul.org/talks

