
Maintaining an open source project 
while sustaining your sanity

Andrew Gaul
Open Source Summit Japan

15 December 2021
https://youtu.be/F-RAztCSOyc

https://youtu.be/F-RAztCSOyc


About me

● Maintainer of small- to medium-size projects
● Apache jclouds committer since 2012

○ Originally many maintainers but now only a few
○ 100s of contributors

● S3Proxy author, created in 2014
○ Only one maintainer
○ ~30 contributors

● s3fs contributor since 2015, committer since 2019
○ Two maintainers, neither are the original authors
○ ~100 contributors

● Live in Tokyo 󰏦



What is project maintainership?

● Working with users
● Triaging issues
● Cutting releases
● Scoping project
● Coordinating contributors
● Working with external projects
● Reviewing code
● Improving project quality
● Writing new code (sometimes)



Sustaining your sanity

● You will burn yourself out if you try to do 
everything by yourself

● Instead consider your project from 
different vantage points

● Try doing less but different work over 
longer periods of time

● This may allow you to sustain a project 
for years

● But you will have to get into management



Project maintainers wear many hats

● Product manager
○ Advocate for the user

● Engineering manager
○ Advocate for the team

● Technical lead
○ Advocate for the code

● This talk explores what you can 
do with few resources and lack of 
corporate sponsorship



Part 1: Thinking like a product manager

● Advocate for the user
● Evaluate the project against the ecosystem

○ Look at many sources: blogs, conferences, 
Hacker News, Reddit, Stack Overflow, Twitter

● Think about how users interact with project
○ Configuration, releases, packaging, 

documentation, backwards compatibility
● Prioritize new features and critical fixes

○ Immediate workarounds can be better than 
proper fixes in the future

● Look at “competing” projects



Issues

● Issues can be the highest-quality feedback 
from your users

○ Or a junkyard of vague, unresolved symptoms 
and abuse

● Periodic grooming can help you and your 
users understand the project

● Clarify, de-duplicate, and close issues
● Proactively use HELPWANTED and 

NEEDINFO labels
○ Avoids ambiguity and misunderstandings



Case study: s3fs

● s3fs mounts S3 buckets as a filesystem
● Grooming revealed the most common issues

○ POSIX permissions conflicted with S3 interoperability
■ Required unintuitive configuration workaround
■ ~20 line PR fixed many issues simultaneously

○ Multiple symptoms of data corruption
■ Required years of iteration with users, improved 

testing, new tooling, and several bug fixes
● Hundreds of other issues

○ Categorized and ignored for years
○ Making slow progress addressing these



Working with users

● Most users are helpful or neutral
● Angry people cannot be helped -- 

ignore and report abuse if needed
● Entitled people misunderstand their 

relationship to the project -- can be 
educated

● Flip the script -- users should work for 
maintainers

○ Can users clarify issues, test proposed 
fixes, investigate workarounds, etc.?



Releases

● Most users consume release versions, not 
development branches

● Recommend regular, time-based schedule
○ Every six months or less

● Prepare to avoid buggy releases
○ Open a tracking issue and ask users to test
○ Slow down changes

● Beware of users reporting new bugs against old 
versions!

○ Understand why users prefer old releases, e.g., stale 
distribution packages, API breakage, regressions



Part 2: Thinking like an engineering manager

● Advocate for the team
● Managing project scope against goals
● Bring people and resources onto the 

project
● Coordination with external projects
● Dealing with forks



Managing the team

● Usually cannot tell contributors what to do
○ Instead @mention users to ask for help

● Any blockers to new contributors?
○ Toxic environment, build issues, technical debt, 

missing license, unclear code formatting
● Nudge issue reporters to become contributors

○ Suggesting how to fix an issue or where to start can 
overcome friction

● Outsource testing of PRs to issue reporters
● Dependencies are logically part of your code

○ Do you report issues upstream?



Project scope

● Anti-pattern: be everything to everyone
● Not all proposed changes need to be 

merged upstream
○ Even well-written ones!

● Will contribution increase your 
maintenance burden?

○ If so, will the contributor maintain the code?
● Project scope is easy to widen but 

difficult to narrow
○ Say “no” or “not yet” early and often



Case study: Apache jclouds

● jclouds is a Java-based cross-cloud abstraction
● Declining project activity despite stable user base and 

downloads
○ More work done by fewer maintainers!

● Scope was too large -- shrank project to compensate
○ Removed unmaintained code
○ Outsourced difficult features to separate projects (Karaf, CLI)
○ Dropped Java 6 and 7 compatibility
○ Upgraded or removed old dependencies (Guava, Guice)
○ Reducing number of repositories

● These changes should have been made years ago!



Dealing with forks

● Forking has several causes
○ Most benign is cherry-picking fixes until the next 

release
○ Some have local functionality that is inappropriate or 

not ready for mainline
○ A few have a major scope, license, or interpersonal 

disagreement
● Re-integrating forks can unify users and 

development effort
○ Look for opportunities to collaborate to reduce user 

pain
● Most forks die of neglect but it is worth 

understanding their motivations



Case study: s3fs

● s3fs mounts S3 buckets as a filesystem
○ Several forks and reimplementations due to inconsistent 

maintainership
● Aliyun and Tencent clouds offer S3-compatible 

cloud services
○ Forked ossfs and cosfs in 2016 to fix bugs and customize
○ Re-integrated in 2020 -- now some of their developers work 

with mainline
● Another cloud asked to add a non-S3 protocol

○ Told contributor “not yet” so mainline can focus on S3
○ Offered to merge partial changes that make their fork easier



Niche users

● Open source allows adapting to new use cases
● Some users are pioneering

○ Large-scale, Raspberry Pi, etc.

● But some users ask for esoteric things
○ RHEL 6, Java 7, AIX, or POWER compatibility

● You cannot do it all
○ Let niche users fork and periodically rebase



Part 3: Thinking like a technical lead

● Advocate for the technology
● Protect existing code
● Think about project evolution over the long 

term
● Make proactive technical investments
● Communicate with contributors



Protecting existing code

● Existing code is more important than new 
code

○ Cost of regressions is higher than you think
● Write tests and use continuous integration
● Code review helps but is labor intensive

○ Especially working with new contributors
● Break up large, risky changes into multiple 

smaller ones spread over time
● Evaluate how a proposed change 

interacts with current and future features



Case study: S3Proxy

● S3Proxy implements the S3 API with 
different backends, e.g., Azure, filesystem

● Adopted Ceph s3-tests project soon after 
project creation

○ Solid test coverage that improved over time
○ Reduced need to create custom tests
○ But it is a difficult project to work with that 

required a long-lived fork
● s3-tests have prevented many 

regressions from contributors
● Aligned project with the ecosystem



Evaluating technical risk

● Critically evaluate proposed changes
○ Does it improve the user experience?
○ Does it limit your contributors?
○ Does it reduce or increase the maintenance 

burden?
● Choose boring technology?

○ You have limited innovation tokens -- spend wisely
○ If you take all the risks one of them will burn you

● Think about project evolution
○ Will a new library still have maintainers next year?

http://boringtechnology.club/


Technical debt

● Any issue that increases development friction
● Missing, flaky, and slow tests
● Outdated or unnecessary dependencies
● Move from in-tree custom implementations to 

shared third-party libraries
● Push features out of your project into other 

projects
● Try to pay down (some) existing debt before 

taking on more debts



Case study: s3fs

● s3fs mounts S3 buckets as a filesystem
● Implements a custom S3 client via libcurl

○ Legacy problem since s3fs predates third-party libraries
○ Historically a source of bugs
○ Frustration due to missing authentication mechanisms

● Transitioning to AWS SDK would address this 
debt but comes with trade-offs

○ Requires newer C++ compiler and refactoring
○ Periodically evaluate but always defer

● Maintainers keep paying small short-term costs 
instead of addressing long-term issue



Thinking out loud

● Internet makes some kinds of collaboration 
more difficult

● Important to foster a sense of community 
with contributors and users

○ Can you share your ideas on mailing lists, GitHub 
issues, or Twitter?

○ Can you ask others what they think?
● Bias towards over-communicating

○ Share work-in-progress commits
● Document design in issues, PRs, and wikis

○ Non-developers rarely read code comments



Part 4: Thinking about sustainability

● Project maintainership is a lot of work
● You may need to write less code to make 

time for these activities
● Aim to do fewer things over longer periods 

of time
● Sometimes the original author should step 

aside to let others maintain a project



Thinking about the long term

● Where do you want your project to be in 1 
year?

○ ...in 10 years?
● What kinds of changes would be truly 

impactful?
○ Easy to be reactive and fix random issues from 

loud users
○ Are there broad themes that you can make 

progress on?
● Your project may outlast your interest in it

○ Can you prepare for the next maintainer?



Thinking about maintainer commitments

● How much time do you want to dedicate to a 
project per month?

○ 1 hour? 10 hours? 100 hours?!
○ Setting a budget helps prioritize your work

● What quality-of-service you want to provide?
○ Consider batch-processing instead of interrupt-driven 

development
● Not everything needs to be done today

○ ...or maybe ever!



Conclusion

● Prioritize issues that are important to users
● Enable contributors and outsource tasks
● Make technology decisions that allow 

long-term evolution
● Say “no” and “not yet” more often
● Think about the long-term



Thank you!

Andrew Gaul
http://gaul.org/talks

Open Source Summit Japan
15 December 2021

http://gaul.org/talks

